Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3325, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637537

RESUMO

The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries.

2.
Chem Sci ; 15(9): 3071-3092, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425533

RESUMO

Aqueous zinc-iodine batteries stand out as highly promising energy storage systems owing to the abundance of resources and non-combustible nature of water coupled with their high theoretical capacity. Nevertheless, the development of aqueous zinc-iodine batteries has been impeded by persistent challenges associated with iodine cathodes and Zn anodes. Key obstacles include the shuttle effect of polyiodine and the sluggish kinetics of cathodes, dendrite formation, the hydrogen evolution reaction (HER), and the corrosion and passivation of anodes. Numerous strategies aimed at addressing these issues have been developed, including compositing with carbon materials, using additives, and surface modification. This review provides a recent update on various strategies and perspectives for the development of aqueous zinc-iodine batteries, with a particular emphasis on the regulation of I2 cathodes and Zn anodes, electrolyte formulation, and separator modification. Expanding upon current achievements, future initiatives for the development of aqueous zinc-iodine batteries are proposed, with the aim of advancing their commercial viability.

3.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477330

RESUMO

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

4.
Adv Mater ; : e2402337, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458611

RESUMO

Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.

5.
Adv Mater ; : e2313775, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324253

RESUMO

The uneven texture evolution of Zn during electrodeposition would adversely impact upon the lifespan of aqueous Zn metal batteries. To address this issue, tremendous endeavors are made to induce Zn(002) orientational deposition employing graphene and its derivatives. Nevertheless, the effect of prototype graphene film over Zn deposition behavior has garnered less attention. Here, it is attempted to solve such a puzzle via utilizing transferred high-quality graphene film with controllable layer numbers in a scalable manner on a Zn foil. The multilayer graphene fails to facilitate a Zn epitaxial deposition, whereas the monolayer film with slight breakages steers a unique pinhole deposition mode. In-depth electrochemical measurements and theoretical simulations discover that the transferred graphene film not only acts as an armor to inhibit side reactions but also serves as a buffer layer to homogenize initial Zn nucleation and decrease Zn migration barrier, accordingly enabling a smooth deposition layer with closely stacked polycrystalline domains. As a result, both assembled symmetric and full cells manage to deliver satisfactory electrochemical performances. This study proposes a concept of "pinhole deposition" to dictate Zn electrodeposition and broadens the horizons of graphene-modified Zn anodes.

6.
Adv Mater ; : e2312207, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329004

RESUMO

Linearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high-rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high-rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g-1 , the Na-S battery retains a capacity of 325 mAh g-1 . This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high-performance energy devices.

7.
Adv Mater ; 36(16): e2311814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194156

RESUMO

Li-rich cathode materials have emerged as one of the most prospective options for Li-ion batteries owing to their remarkable energy density (>900 Wh kg-1). However, voltage hysteresis during charge and discharge process lowers the energy conversion efficiency, which hinders their application in practical devices. Herein, the fundamental reason for voltage hysteresis through investigating the O redox behavior under different (de)lithiation states is unveiled and it is successfully addressed by formulating the local environment of O2-. In Li-rich Mn-based materials, it is confirmed that there exists reaction activity of oxygen ions at low discharge voltage (<3.6 V) in the presence of TM-TM-Li ordered arrangement, generating massive amount of voltage hysteresis and resulting in a decreased energy efficiency (80.95%). Moreover, in the case where Li 2b sites are numerously occupied by TM ions, the local environment of O2- evolves, the reactivity of oxygen ions at low voltage is significantly inhibited, thus giving rise to the large energy conversion efficiency (89.07%). This study reveals the structure-activity relationship between the local environment around O2- and voltage hysteresis, which provides guidance in designing next-generation high-performance cathode materials.

8.
Nat Commun ; 15(1): 176, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167809

RESUMO

Despite the recent achievements in urea electrosynthesis from co-reduction of nitrogen wastes (such as NO3-) and CO2, the product selectivity remains fairly mediocre due to the competing nature of the two parallel reduction reactions. Here we report a catalyst design that affords high selectivity to urea by sequentially reducing NO3- and CO2 at a dynamic catalytic centre, which not only alleviates the competition issue but also facilitates C-N coupling. We exemplify this strategy on a nitrogen-doped carbon catalyst, where a spontaneous switch between NO3- and CO2 reduction paths is enabled by reversible hydrogenation on the nitrogen functional groups. A high urea yield rate of 596.1 µg mg-1 h-1 with a promising Faradaic efficiency of 62% is obtained. These findings, rationalized by in situ spectroscopic techniques and theoretical calculations, are rooted in the proton-involved dynamic catalyst evolution that mitigates overwhelming reduction of reactants and thereby minimizes the formation of side products.

9.
ACS Appl Mater Interfaces ; 16(2): 2330-2340, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165730

RESUMO

It remains a tremendous challenge to achieve high-efficiency bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) for hydrogen production by water splitting. Herein, a novel hybrid of 0D nickel nanoparticles dispersed on the one-dimensional (1D) molybdenum carbide micropillars embedded in the carbon layers (Ni/Mo2C@C) was successfully prepared on nickel foam by a facile pyrolysis strategy. During the synthesis process, the nickel nanoparticles and molybdenum carbide were simultaneously generated under H2 and C2H2 mixed atmospheres and conformally encapsulated in the carbon layers. Benefiting from the distinctive 0D/1D heterostructure and the synergistic effect of the biphasic Mo2C and Ni together with the protective effect of the carbon layer, the reduced activation energy barriers and fast catalytic reaction kinetics can be achieved, resulting in a small overpotential of 96 mV for the HER and 266 mV for the OER at the current density of 10 mA cm-2 together with excellent durability in 1.0 M KOH electrolyte. In addition, using the developed Ni/Mo2C@C as both the cathode and anode, the constructed electrolyzer exhibits a small voltage of 1.55 V for the overall water splitting. The novel designed Ni/Mo2C@C may give inspiration for the development of efficient bifunctional catalysts with low-cost transition metal elements for water splitting.

10.
Chem Sci ; 15(3): 1123-1131, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239697

RESUMO

Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped Ni0.85Se/MoSe2 heterostructural electrocatalyst, Mox-Ni0.85Se/MoSe2, was successfully prepared by simultaneously doping Mo cations into the Ni0.85Se lattice (Mox-Ni0.85Se) and growing atomic MoSe2 nanosheets epitaxially at the edge of the Mox-Ni0.85Se. Such an Mox-Ni0.85Se/MoSe2 catalyst requires only 110 mV to drive current densities of 10 mA cm-2 in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm-2. The experimental results, combined with the density functional theory calculations, reveal that the Mox-Ni0.85Se/MoSe2 heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the Ni0.85Se can regulate the local electronic configuration of the Mox-Ni0.85Se/MoSe2 heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mox-Ni0.85Se/MoSe2 heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.

11.
Adv Mater ; 36(5): e2307645, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989269

RESUMO

Sodium metal has become one of the most promising anodes for next-generation cheap and high-energy-density metal batteries; however, challenges caused by the uncontrollable sodium dendrite growth and fragile solid electrolyte interphase (SEI) restrict their large-scale practical applications in low-cost and wide-voltage-window carbonate electrolytes. Herein, a novel multifunctional separator with lightweight and high thinness is proposed, assembled by the cobalt-based metal-organic framework nanowires (Co-NWS), to replace the widely applied thick and heavy glass fiber separator. Benefitting from its abundant sodiophilic functional groups and densely stacked nanowires, Co-NWS not only exhibits outstanding electrolyte wettability and effectively induces uniform Na+ ion flux as a strong ion redistributor but also favors constructing the robust N,F-rich SEI layer. Satisfactorily, with 10 µL carbonate electrolyte, a Na|Co-NWS|Cu half-cell delivers stable cycling (over 260 cycles) with a high average Coulombic efficiency of 98%, and the symmetric cell shows a long cycle life of more than 500 h. Remarkably, the full cell shows a long-term life span (over 1500 cycles with 92% capacity retention) at high current density in the carbonate electrolyte. This work opens up a strategy for developing dendrite-free, low-cost, and long-life-span sodium metal batteries in carbonate-based electrolytes.

12.
Angew Chem Int Ed Engl ; 63(2): e202313264, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37985401

RESUMO

Mg-CO2 battery has been considered as an ideal system for energy conversion and CO2 fixation. However, its practical application is significantly limited by the poor reversibility and sluggish kinetics of CO2 cathode and Mg anode. Here, a new amine mediated chemistry strategy is proposed to realize a highly reversible and high-rate Mg-CO2 battery in conventional electrolyte. Judiciously combined experimental characterization and theoretical computation unveiled that the introduced amine could simultaneously modify the reactant state of CO2 and Mg2+ to accelerate CO2 cathodic reactions on the thermodynamic-kinetic levels and facilitate the formation of Mg2+ -conductive solid-electrolyte interphase (SEI) to enable highly reversible Mg anode. As a result, the Mg-CO2 battery exhibits boosted stable cyclability (70 cycles, more than 400 h at 200 mA g-1 ) and high-rate capability (from 100 to 2000 mA g-1 with 1.5 V overpotential) even at -15 °C. This work opens a newly promising avenue for advanced metal-CO2 batteries.

13.
Chem Sci ; 14(47): 13924-13933, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075638

RESUMO

Ni-rich cathodes with a radial ordered microstructure have been proved to enhance materials' structural stability. However, the construction process of radial structures has not yet been clearly elaborated. Herein, the formation process of radial structures induced by different doped elements has been systematically investigated. The advanced Electron Back Scatter Diffraction (EBSD) characterization reveals that W-doped materials are more likely to form a low-angle arrangement between crystal planes of the primary particles and exhibit twin growth during sintering than a B-doped cathode. The corresponding High Angle Annular Dark Field-Scanning Transmission Electron Microscopy (HAADF-STEM) analysis further proves that the twin growth induced by W doping can promote the migration of Li+. Simultaneously, the W-doped sample reduces the (003) plane surface energy and promotes the retention of the crystal plane, which can effectively alleviate the structural degradation caused by Li+ (de)intercalation. At a cut-off voltage of 4.6 V, the W-doped cathode displays a capacity retention rate of 94.1% after 200 cycles at 1C. This work unveils the influence of different element doping on the structure from the perspective of crystal plane orientation within primary particles and points out the importance of the exposure and orientation of the crystal plane of the particles.

14.
ACS Nano ; 17(21): 21360-21368, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906685

RESUMO

The integrated photoelectric battery serves as a compact and energy-efficient form for direct conversion and storage of solar energy compared to the traditional isolated PV-battery systems. However, combining efficient light harvesting and electrochemical energy storage into a single material is a great challenge. Here, a bifunctional lead phytate-cesium lead bromide (PbPA-CsPbBr3) cathode is explored for the solid-state batteries in terms of CsPbBr3 in situ grown on the PbPA framework. Specifically, CsPbBr3 nanocrystals generate electron-hole pairs under sunlight, the holes contribute to the lithium desorption of the discharged PbPA, and the electrons participate in the formation of the cathode interfacial film through oxygen reduction. The obtained solid-state photoelectric lithium-metal battery achieved a photoconversion efficiency of 0.72%, outperforming other systems under the same lighting conditions. The reasonable cathode design and its application in integrated solid-state batteries provide an efficient way for solar energy utilization.

15.
Sci Adv ; 9(42): eadi8025, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37851800

RESUMO

The anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce d-band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance. Consequently, the optimized catalyst exhibits a high mass activity of 4.4 A mgIr-1 at an overpotential of 320 mV and outstanding long-term stability. A proton-exchange-membrane water electrolyzer using this catalyst delivers a current density of 2 A cm-2 at 1.711 V and low degradation in an accelerated aging test. Theoretical calculations unravel that the oxygen radicals induced by the π* interaction between Ir 5d-O 2p might be responsible for the boosted activity and durability.

16.
Small ; : e2308209, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880867

RESUMO

Orientation guidance has shown its cutting edges in electrodeposition modulation to promote Zn anode stability toward commercialized standards. Nevertheless, large-scale orientational deposition is handicapped by the competition between Zn-ion reduction and mass transfer. Herein, a holistic electrolyte additive protocol is put forward via incorporating bio-derived dextrin molecules into a zinc sulfate electrolyte bath. Electrochemical tests in combination with molecular dynamics simulations demonstrate the alleviation of concentration polarization throughout accelerating Zn2+ diffusion and retarding their reduction. The predominant (101) texture on inert current collectors (i.e., Cu, Ti, and stainless steel) and (101)/(002) textures on Zn foils afford homogeneous electrical field distribution, which is contributed by the work difference to form the 2D nucleus and the adsorption of dextrin molecules, respectively. Consequently, the symmetric cell harvests a longevous cycling lifespan of over 4000 h at 0.5 mA cm-2 /0.5 mAh cm-2 while the Zn@Cu electrode sustains for 240 h at a high depth of discharge of 40%.

17.
Angew Chem Int Ed Engl ; 62(49): e202315182, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37872352

RESUMO

The exploration of inexpensive and efficient catalysts for oxygen reduction reaction (ORR) is crucial for chemical and energy industries. Carbon materials have been proved promising with different catalysts enabling 2 and 4e- ORR. Nevertheless, their ORR activity and selectivity is still complex and under debate in many cases. Many structures of these active carbon materials are also chemically unstable for practical implementations. Unlike the well-discussed structures, this work presents a strategy to promote efficient and stable 2e- ORR of carbon materials through the synergistic effect of lattice distortion and H-passivation (on the distorted structure). We show how these structures can be formed on carbon cloth, and how the reproducible chemical adsorption can be realized on these structures for efficient and stable H2 O2 production. The work here gives not only new understandings on the 2e- ORR catalysis, but also the robust catalyst which can be directly used in industry.

18.
Adv Mater ; 35(51): e2306269, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882357

RESUMO

The challenge with aqueous zinc-ion batteries (ZIBs) lies in finding suitable cathode materials that can provide high capacity and fast kinetics. Herein, two-dimensional topological Bi2 Se3 with acceptable Bi-vacancies for ZIBs cathode (Cu-Bi2-x Se3 ) is constructed through one-step hydrothermal process accompanied by Cu heteroatom introduction. The cation-deficient Cu-Bi2-x Se3 nanosheets (≈4 nm) bring improved conductivity from large surface topological metal states contribution and enhanced bulk conductivity. Besides, the increased adsorption energy and reduced Zn2+ migration barrier demonstrated by density-functional theory (DFT) calculations illustrate the decreased Coulombic ion-lattice repulsion of Cu-Bi2-x Se3 . Therefore, Cu-Bi2-x Se3 exhibits both enhanced ion and electron transport capability, leading to more carrier reversible insertion proved by in situ synchrotron X-ray diffraction (SXRD). These features endow Cu-Bi2-x Se3 with sufficient specific capacity (320 mA h g-1 at 0.1 A g-1 ), high-rate performance (97 mA h g-1 at 10 A g-1 ), and reliable cycling stability (70 mA h g-1 at 10 A g-1 after 4000 cycles). Furthermore, quasi-solid-state fiber-shaped ZIBs employing the Cu-Bi2-x Se3 cathode demonstrate respectable performance and superior flexibility even under high mass loading. This work implements a conceptually innovative strategy represented by cation defect design in topological insulator cathode for achieving high-performance battery electrochemistry.

19.
ACS Appl Mater Interfaces ; 15(38): 44839-44847, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37694844

RESUMO

Manganese-based layered oxides are prospective cathode materials for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. The biphasic intergrowth structure of layered cathode materials is essential for improving the sodium storage performance, which is attributed to the synergistic effect between the two phases. However, the in-depth formation mechanism of biphasic intergrowth materials remains unclear. Herein, the layered/tunnel intergrowth Na0.6MnO2 (LT-NaMO) as a model material was successfully prepared, and their formation processes and electrochemical performance were systematically investigated. In situ high-temperature X-ray diffraction displays the detailed evolution process and excellent thermal stability of the layered/tunnel intergrowth structure. Furthermore, severe structural strain and large lattice volume changes are significantly mitigated by the interlocking effect between the phase interfaces, which further enhances the structural stability of the cathode materials during the charging/discharging process. Consequently, the LT-NaMO cathode displays fast Na+ transport kinetics with a remarkable capacity retention of ∼70.5% over 300 cycles at 5C, and its assembled full cell with hard carbon also exhibits high energy density. These findings highlight the superior electrochemical performance of intergrowth materials due to interlocking effects between layered and tunnel structures and also provide unique insights into the construction of intergrowth cathode materials for SIBs.

20.
Nanomicro Lett ; 15(1): 208, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37651047

RESUMO

The last several years have witnessed the prosperous development of zinc-ion batteries (ZIBs), which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety. However, the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth, hydrogen evolution, and corrosion passivation on anode side. A functionally and structurally well-designed anode current collectors (CCs) is believed as a viable solution for those problems, with a lack of summarization according to its working mechanisms. Herein, this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs, which can be divided into zincophilic modification, structural design, and steering the preferred crystal facet orientation. The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...